bigfunctions > create_materialized_view_w_flattened_json_column
create_materialized_view_w_flattened_json_column¶
Call or Deploy create_materialized_view_w_flattened_json_column
?
✅ You can call this create_materialized_view_w_flattened_json_column
bigfunction directly from your Google Cloud Project (no install required).
- This
create_materialized_view_w_flattened_json_column
function is deployed inbigfunctions
GCP project in 39 datasets for all of the 39 BigQuery regions. You need to use the dataset in the same region as your datasets (otherwise you may have a function not found error). - Function is public, so it can be called by anyone. Just copy / paste examples below in your BigQuery console. It just works!
- You may prefer to deploy the BigFunction in your own project if you want to build and manage your own catalog of functions. This is particularly useful if you want to create private functions (for example calling your internal APIs). Discover the framework
Public BigFunctions Datasets:
Region | Dataset |
---|---|
eu |
bigfunctions.eu |
us |
bigfunctions.us |
europe-west1 |
bigfunctions.europe_west1 |
asia-east1 |
bigfunctions.asia_east1 |
... | ... |
Description¶
Signature
create_materialized_view_w_flattened_json_column(fully_qualified_table, fully_qualified_materialized_view, json_column)
Description
Create a Materialized view of a table with json_column
flattened
.
It creates a materialized view with:
- query given by sql_to_flatten_json_column function
- same partition as
fully_qualified_table
Examples¶
call bigfunctions.eu.create_materialized_view_w_flattened_json_column('your_project.your_dataset.your_table', 'your_project.your_dataset.your_materialized_view', 'data');
call bigfunctions.us.create_materialized_view_w_flattened_json_column('your_project.your_dataset.your_table', 'your_project.your_dataset.your_materialized_view', 'data');
call bigfunctions.europe_west1.create_materialized_view_w_flattened_json_column('your_project.your_dataset.your_table', 'your_project.your_dataset.your_materialized_view', 'data');
Need help using create_materialized_view_w_flattened_json_column
?
The community can help! Engage the conversation on Slack
For professional suppport, don't hesitate to chat with us.
Found a bug using create_materialized_view_w_flattened_json_column
?
If the function does not work as expected, please
- report a bug so that it can be improved.
- or open the discussion with the community on Slack.
For professional suppport, don't hesitate to chat with us.
Use cases¶
You have a BigQuery table containing a JSON column called data
that stores user activity logs. The JSON structure varies slightly between records, making it difficult to query specific attributes efficiently. You want to create a materialized view that flattens this JSON column, allowing simpler and faster queries on these attributes.
Use Case:
Let's say your table your_project.your_dataset.your_table
looks like this:
user_id | event_timestamp | data |
---|---|---|
1 | 2024-07-26 10:00 | {"event_type":"page_view", "page":"/home"} |
2 | 2024-07-26 10:01 | {"event_type":"purchase", "item_id": 123} |
1 | 2024-07-26 10:02 | {"event_type":"page_view", "page":"/products"} |
You can use the create_materialized_view_w_flattened_json_column
function to create a materialized view your_project.your_dataset.your_materialized_view
:
call bigfunctions.us.create_materialized_view_w_flattened_json_column('your_project.your_dataset.your_table', 'your_project.your_dataset.your_materialized_view', 'data');
This will create a materialized view with columns for user_id
, event_timestamp
, and the flattened JSON attributes, like event_type
, page
, and item_id
. The resulting materialized view might look something like this (depending on the actual data and the function's implementation):
user_id | event_timestamp | event_type | page | item_id |
---|---|---|---|---|
1 | 2024-07-26 10:00 | page_view | /home | NULL |
2 | 2024-07-26 10:01 | purchase | NULL | 123 |
1 | 2024-07-26 10:02 | page_view | /products | NULL |
Now, querying for all page views becomes significantly easier:
SELECT * FROM your_project.your_dataset.your_materialized_view WHERE event_type = 'page_view';
This query will be much faster than querying the original table and parsing the JSON within the WHERE
clause. This improved query performance is the key benefit of using a materialized view with a flattened JSON column.
Spread the word¶
BigFunctions is fully open-source. Help make it a success by spreading the word!